metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.35D20, C22.3Dic20, C40⋊5C4⋊2C2, (C2×C8).1D10, (C2×C4).30D20, (C2×C20).41D4, C22⋊C8.3D5, (C2×C10).4Q16, C10.5(C2×Q16), (C2×C40).1C22, C2.7(C2×Dic20), C20.44D4⋊4C2, C10.7(C8⋊C22), (C22×C10).49D4, (C22×C4).76D10, C20.280(C4○D4), C2.10(C8⋊D10), (C2×C20).739C23, C20.48D4.3C2, C22.102(C2×D20), C5⋊1(C23.48D4), C4⋊Dic5.11C22, C4.104(D4⋊2D5), (C22×C20).49C22, (C2×Dic10).13C22, C10.15(C22.D4), C2.11(C22.D20), (C5×C22⋊C8).5C2, (C2×C10).122(C2×D4), (C2×C4⋊Dic5).13C2, (C2×C4).684(C22×D5), SmallGroup(320,349)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C20 — C2×C20 — C4⋊Dic5 — C2×C4⋊Dic5 — C23.35D20 |
Generators and relations for C23.35D20
G = < a,b,c,d,e | a2=b2=c2=1, d20=e2=c, ab=ba, ac=ca, dad-1=eae-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd19 >
Subgroups: 398 in 104 conjugacy classes, 43 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, Q8, C23, C10, C10, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C22⋊C8, Q8⋊C4, C2.D8, C2×C4⋊C4, C22⋊Q8, C40, Dic10, C2×Dic5, C2×C20, C2×C20, C22×C10, C23.48D4, C10.D4, C4⋊Dic5, C4⋊Dic5, C4⋊Dic5, C23.D5, C2×C40, C2×Dic10, C22×Dic5, C22×C20, C20.44D4, C40⋊5C4, C5×C22⋊C8, C20.48D4, C2×C4⋊Dic5, C23.35D20
Quotients: C1, C2, C22, D4, C23, D5, Q16, C2×D4, C4○D4, D10, C22.D4, C2×Q16, C8⋊C22, D20, C22×D5, C23.48D4, Dic20, C2×D20, D4⋊2D5, C22.D20, C2×Dic20, C8⋊D10, C23.35D20
(2 149)(4 151)(6 153)(8 155)(10 157)(12 159)(14 121)(16 123)(18 125)(20 127)(22 129)(24 131)(26 133)(28 135)(30 137)(32 139)(34 141)(36 143)(38 145)(40 147)(41 91)(43 93)(45 95)(47 97)(49 99)(51 101)(53 103)(55 105)(57 107)(59 109)(61 111)(63 113)(65 115)(67 117)(69 119)(71 81)(73 83)(75 85)(77 87)(79 89)
(1 128)(2 129)(3 130)(4 131)(5 132)(6 133)(7 134)(8 135)(9 136)(10 137)(11 138)(12 139)(13 140)(14 141)(15 142)(16 143)(17 144)(18 145)(19 146)(20 147)(21 148)(22 149)(23 150)(24 151)(25 152)(26 153)(27 154)(28 155)(29 156)(30 157)(31 158)(32 159)(33 160)(34 121)(35 122)(36 123)(37 124)(38 125)(39 126)(40 127)(41 111)(42 112)(43 113)(44 114)(45 115)(46 116)(47 117)(48 118)(49 119)(50 120)(51 81)(52 82)(53 83)(54 84)(55 85)(56 86)(57 87)(58 88)(59 89)(60 90)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 101)(72 102)(73 103)(74 104)(75 105)(76 106)(77 107)(78 108)(79 109)(80 110)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 83 21 103)(2 72 22 52)(3 81 23 101)(4 70 24 50)(5 119 25 99)(6 68 26 48)(7 117 27 97)(8 66 28 46)(9 115 29 95)(10 64 30 44)(11 113 31 93)(12 62 32 42)(13 111 33 91)(14 60 34 80)(15 109 35 89)(16 58 36 78)(17 107 37 87)(18 56 38 76)(19 105 39 85)(20 54 40 74)(41 160 61 140)(43 158 63 138)(45 156 65 136)(47 154 67 134)(49 152 69 132)(51 150 71 130)(53 148 73 128)(55 146 75 126)(57 144 77 124)(59 142 79 122)(82 129 102 149)(84 127 104 147)(86 125 106 145)(88 123 108 143)(90 121 110 141)(92 159 112 139)(94 157 114 137)(96 155 116 135)(98 153 118 133)(100 151 120 131)
G:=sub<Sym(160)| (2,149)(4,151)(6,153)(8,155)(10,157)(12,159)(14,121)(16,123)(18,125)(20,127)(22,129)(24,131)(26,133)(28,135)(30,137)(32,139)(34,141)(36,143)(38,145)(40,147)(41,91)(43,93)(45,95)(47,97)(49,99)(51,101)(53,103)(55,105)(57,107)(59,109)(61,111)(63,113)(65,115)(67,117)(69,119)(71,81)(73,83)(75,85)(77,87)(79,89), (1,128)(2,129)(3,130)(4,131)(5,132)(6,133)(7,134)(8,135)(9,136)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(17,144)(18,145)(19,146)(20,147)(21,148)(22,149)(23,150)(24,151)(25,152)(26,153)(27,154)(28,155)(29,156)(30,157)(31,158)(32,159)(33,160)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,111)(42,112)(43,113)(44,114)(45,115)(46,116)(47,117)(48,118)(49,119)(50,120)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,83,21,103)(2,72,22,52)(3,81,23,101)(4,70,24,50)(5,119,25,99)(6,68,26,48)(7,117,27,97)(8,66,28,46)(9,115,29,95)(10,64,30,44)(11,113,31,93)(12,62,32,42)(13,111,33,91)(14,60,34,80)(15,109,35,89)(16,58,36,78)(17,107,37,87)(18,56,38,76)(19,105,39,85)(20,54,40,74)(41,160,61,140)(43,158,63,138)(45,156,65,136)(47,154,67,134)(49,152,69,132)(51,150,71,130)(53,148,73,128)(55,146,75,126)(57,144,77,124)(59,142,79,122)(82,129,102,149)(84,127,104,147)(86,125,106,145)(88,123,108,143)(90,121,110,141)(92,159,112,139)(94,157,114,137)(96,155,116,135)(98,153,118,133)(100,151,120,131)>;
G:=Group( (2,149)(4,151)(6,153)(8,155)(10,157)(12,159)(14,121)(16,123)(18,125)(20,127)(22,129)(24,131)(26,133)(28,135)(30,137)(32,139)(34,141)(36,143)(38,145)(40,147)(41,91)(43,93)(45,95)(47,97)(49,99)(51,101)(53,103)(55,105)(57,107)(59,109)(61,111)(63,113)(65,115)(67,117)(69,119)(71,81)(73,83)(75,85)(77,87)(79,89), (1,128)(2,129)(3,130)(4,131)(5,132)(6,133)(7,134)(8,135)(9,136)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(17,144)(18,145)(19,146)(20,147)(21,148)(22,149)(23,150)(24,151)(25,152)(26,153)(27,154)(28,155)(29,156)(30,157)(31,158)(32,159)(33,160)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,111)(42,112)(43,113)(44,114)(45,115)(46,116)(47,117)(48,118)(49,119)(50,120)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,83,21,103)(2,72,22,52)(3,81,23,101)(4,70,24,50)(5,119,25,99)(6,68,26,48)(7,117,27,97)(8,66,28,46)(9,115,29,95)(10,64,30,44)(11,113,31,93)(12,62,32,42)(13,111,33,91)(14,60,34,80)(15,109,35,89)(16,58,36,78)(17,107,37,87)(18,56,38,76)(19,105,39,85)(20,54,40,74)(41,160,61,140)(43,158,63,138)(45,156,65,136)(47,154,67,134)(49,152,69,132)(51,150,71,130)(53,148,73,128)(55,146,75,126)(57,144,77,124)(59,142,79,122)(82,129,102,149)(84,127,104,147)(86,125,106,145)(88,123,108,143)(90,121,110,141)(92,159,112,139)(94,157,114,137)(96,155,116,135)(98,153,118,133)(100,151,120,131) );
G=PermutationGroup([[(2,149),(4,151),(6,153),(8,155),(10,157),(12,159),(14,121),(16,123),(18,125),(20,127),(22,129),(24,131),(26,133),(28,135),(30,137),(32,139),(34,141),(36,143),(38,145),(40,147),(41,91),(43,93),(45,95),(47,97),(49,99),(51,101),(53,103),(55,105),(57,107),(59,109),(61,111),(63,113),(65,115),(67,117),(69,119),(71,81),(73,83),(75,85),(77,87),(79,89)], [(1,128),(2,129),(3,130),(4,131),(5,132),(6,133),(7,134),(8,135),(9,136),(10,137),(11,138),(12,139),(13,140),(14,141),(15,142),(16,143),(17,144),(18,145),(19,146),(20,147),(21,148),(22,149),(23,150),(24,151),(25,152),(26,153),(27,154),(28,155),(29,156),(30,157),(31,158),(32,159),(33,160),(34,121),(35,122),(36,123),(37,124),(38,125),(39,126),(40,127),(41,111),(42,112),(43,113),(44,114),(45,115),(46,116),(47,117),(48,118),(49,119),(50,120),(51,81),(52,82),(53,83),(54,84),(55,85),(56,86),(57,87),(58,88),(59,89),(60,90),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,101),(72,102),(73,103),(74,104),(75,105),(76,106),(77,107),(78,108),(79,109),(80,110)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,83,21,103),(2,72,22,52),(3,81,23,101),(4,70,24,50),(5,119,25,99),(6,68,26,48),(7,117,27,97),(8,66,28,46),(9,115,29,95),(10,64,30,44),(11,113,31,93),(12,62,32,42),(13,111,33,91),(14,60,34,80),(15,109,35,89),(16,58,36,78),(17,107,37,87),(18,56,38,76),(19,105,39,85),(20,54,40,74),(41,160,61,140),(43,158,63,138),(45,156,65,136),(47,154,67,134),(49,152,69,132),(51,150,71,130),(53,148,73,128),(55,146,75,126),(57,144,77,124),(59,142,79,122),(82,129,102,149),(84,127,104,147),(86,125,106,145),(88,123,108,143),(90,121,110,141),(92,159,112,139),(94,157,114,137),(96,155,116,135),(98,153,118,133),(100,151,120,131)]])
59 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | 20J | 20K | 20L | 40A | ··· | 40P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 20 | 20 | 20 | 20 | 40 | 40 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
59 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | + | + | - | + | - | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | C4○D4 | Q16 | D10 | D10 | D20 | D20 | Dic20 | C8⋊C22 | D4⋊2D5 | C8⋊D10 |
kernel | C23.35D20 | C20.44D4 | C40⋊5C4 | C5×C22⋊C8 | C20.48D4 | C2×C4⋊Dic5 | C2×C20 | C22×C10 | C22⋊C8 | C20 | C2×C10 | C2×C8 | C22×C4 | C2×C4 | C23 | C22 | C10 | C4 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 2 | 4 | 4 | 16 | 1 | 4 | 4 |
Matrix representation of C23.35D20 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 40 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 29 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 27 | 30 | 0 | 0 |
0 | 0 | 11 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 39 |
0 | 0 | 0 | 0 | 1 | 1 |
21 | 3 | 0 | 0 | 0 | 0 |
3 | 20 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 34 | 0 | 0 |
0 | 0 | 1 | 34 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 18 |
0 | 0 | 0 | 0 | 32 | 32 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,40,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,0,0,0,0,29,12,0,0,0,0,0,0,27,11,0,0,0,0,30,32,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[21,3,0,0,0,0,3,20,0,0,0,0,0,0,7,1,0,0,0,0,34,34,0,0,0,0,0,0,9,32,0,0,0,0,18,32] >;
C23.35D20 in GAP, Magma, Sage, TeX
C_2^3._{35}D_{20}
% in TeX
G:=Group("C2^3.35D20");
// GroupNames label
G:=SmallGroup(320,349);
// by ID
G=gap.SmallGroup(320,349);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,336,254,219,310,1123,136,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^20=e^2=c,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^19>;
// generators/relations